
Expert Systems With Applications 227 (2023) 120195

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

PDCSN: A partition density clustering with self-adaptive neighborhoods
Shuai Xing, Qian-Min Su ∗, Yu-Jie Xiong ∗, Chun-Ming Xia
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China

A R T I C L E I N F O

Keywords:
Density-based clustering
Optimal neighborhood size
Nearest neighbors
Arbitrary density
Self-adaptive

A B S T R A C T

Density-based clustering can discover convex and non-convex clusters without specifying the number of
clusters. However, its ability to handle clusters with heterogeneous densities is limited. Although various
variants solve this problem to some extent, they are still powerless for adjacent clusters with similar
densities. Furthermore, the clustering performance is heavily dependent on user-specified parameters. This
paper proposes a partition density clustering with self-adaptive neighborhoods (PDCSN). For the parameter
dependence problem, a self-adaptive approach based on the natural neighborhood is designed. This approach
utilizes the differences and intrinsic properties of sample density distributions to automatically find the optimal
neighborhood size 𝜆. A partitioning strategy based on mutual 𝜆-nearest neighbors-connectedness is proposed
to distinguish clusters with large varying densities. Moreover, a core sample search approach based on shared
similarity and density heterogeneity is proposed to identify adjacent clusters with similar densities. A series of
experiments on 9 synthetic, 10 real-world, and 2 image datasets demonstrate that PDCSN outperforms several
famous clustering algorithms.
1. Introduction

Clustering is an unsupervised learning tool aiming to divide sam-
ples into groups with specific meanings according to the similarity of
the internal attributes of the data (Fahad et al., 2014). It has been
universally utilized in many industries over the past 50 years, such
as recommender system (Thanh, Ali, & Son, 2017), biometrics (Ye &
Ho, 2019), and object recognition (Tian et al., 2022; Zhu et al., 2020).
However, since the shape and distribution of data are usually complex,
clustering for data with any shapes and densities has gained widespread
attention (Chowdhury, Bhattacharyya, & Kalita, 2021). Besides, clus-
tering with low complexity is also favored due to the emergence of big
data (Hu, Liu, Zhang, & Liu, 2021; Song, Yao, Nie, Li, & Xu, 2021; Zhou
et al., 2020).

Density-based clustering is one of the most mainstream algorithms,
such as DBSCAN (Ester, Kriegel, Sander, Xu, et al., 1996), OPTICS
(Ankerst, Breunig, Kriegel, & Sander, 1999), and DPC (Rodriguez &
Laio, 2014). The process of density-based clustering algorithms usu-
ally contains two steps. First, the samples within dense regions (core
samples) are identified based on the defined approach for evaluating
the density. Second, all connected dense regions are assigned to the
same cluster. In DBSCAN, the sample density is defined by two user-
specified parameters, 𝑒𝑝𝑠 and 𝑀𝑖𝑛𝑃 𝑡𝑠. A sample is identified as a core
sample if at least 𝑀𝑖𝑛𝑃 𝑡𝑠 samples are within an 𝑒𝑝𝑠 distance from
it (Bryant & Cios, 2018). Then, the core samples are assigned to the

∗ Corresponding authors.
E-mail addresses: xshuai@sues.edu.cn (S. Xing), suqm@sues.edu.cn (Q.-M. Su), xiong@sues.edu.cn (Y.-J. Xiong), cmxia@sues.edu.cn (C.-M. Xia).

same cluster if they are closely packed together. However, the fixed
distance parameter 𝑒𝑝𝑠 limits the ability of DBSCAN to handle clus-
ters with heterogeneous densities. Besides, the results of DBSCAN are
heavily dependent on user-specified parameters. OPTICS generates an
augmented ordering of the data to identify clusters with large variations
in density. Although OPTICS addresses one of the shortcomings of
DBSCAN (i.e., limited ability for handling clusters with heterogeneous
densities), its clustering results still depend on 𝑒𝑝𝑠 and 𝑀𝑖𝑛𝑃 𝑡𝑠, to a
certain extent like DBSCAN. In DPC, density peaks are taken as cluster
centroids to absorb the remaining samples, but the number of cluster
centroids must be manually given. Besides, DPC selects a single core
sample for the cluster centroid, resulting in the inability to generate
clusters with arbitrary shapes.

1.1. Limitations of existing work and proposed solutions

Considering the shortcomings of the above algorithms, limitations of
the existing work and proposed solutions are summarized in this study
as follows.

Parameter dependence is an important factor leading to the insta-
bility of clustering. To avoid users repeatedly trying to find the optimal
number of nearest neighbors, a self-adaptive approach is constructed to
estimate the optimal neighborhood size 𝜆 (i.e., the optimal number of
nearest neighbors) without user intervention. The key idea is rooted
vailable online 26 April 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.120195
Received 1 June 2022; Received in revised form 8 March 2023; Accepted 15 April
 2023

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 1. Visualization of the result in each phase of PDCSN.
from that samples in dense regions contain more neighbors, while
samples in sparse regions contain fewer neighbors. Thus, we utilize
the differences and intrinsic properties of sample density distribu-
tions to automatically estimate the critical range of the dense/sparse
neighborhood from all samples in a bottom-up iterative manner.

Density-based clustering is almost ineffective in identifying clusters
with large varying densities. Although the 𝑘-nearest neighbor method
breaks the traditional distance metric, it still cannot recognize the
irregular distribution of clusters in some cases. To solve the above
problem, we propose a partitioning strategy to partition clusters with
large varying densities into different initial clusters. The samples within
a cluster are all connected by mutual 𝜆-nearest neighbors. However,
if all samples are treated equally, adjacent clusters with large varying
densities are partitioned together. Therefore, this strategy first discov-
ers local high/low-density samples. Then, the local high-density sample
and its mutually 𝜆-nearest-neighbor connected samples are divided into
the same initial cluster.

Traditional density-based clustering and most algorithms are pow-
erless to deal with adjacent clusters with similar densities because
distance-based and KNN-based metrics ignore the sparsity of the sam-
ple distribution in the high-dimensional space. Besides, there may
be several adjacent clusters with similar densities within the initial
cluster. Aiming at the above deficiencies, a novel search approach is
proposed to identify the core samples near the cluster centroids. It
amplifies the sparse distribution information from two aspects: (1) in
the neighborhood of edge samples, local high-density samples account
for a small fraction; (2) the neighborhoods of samples at the junction
of adjacent clusters have greater sparsity than those near the cluster
centroids. Moreover, the proposed search approach does not rely on
the distance-based metric, but instead uses specific sample distribution
attributes to determine the dense/sparse neighborhoods in the space.
This avoids the limitations of distance metrics in high-dimensional
space and enables the algorithm to handle high-dimensional data more
effectively.
2

1.2. Contributions

Inspired by the above solutions, we propose a partition density clus-
tering with self-adaptive neighborhoods (PDCSN). PDCSN introduces
the 𝑘-nearest neighbor and statistical methods to fuse adjacent samples’
density distribution information, thereby enlarging the heterogeneity
and sparsity of the sample density distributions. Furthermore, rather
than relying on static user-defined density, PDCSN adopts a top-down
splitting strategy to identify the different cluster structures from the
nearest neighbor graphs. PDCSN consists of four phases, as shown in
Fig. 1. In Phase 1, we propose a self-adaptive neighborhood approach
to estimate the optimal neighborhood size 𝜆 (i.e., the optimal number of
nearest neighbors) and construct the 𝜆-nearest neighbor graph as input
for subsequent phases. In Phase 2, we propose a partitioning strategy
to partition clusters with large varying densities into different initial
clusters. It discovers local high/low-density samples and divides the
local high-density sample and its mutual 𝜆-nearest-neighbor-connected
samples together. In Phase 3, since there may be several adjacent
clusters with similar densities and clusters with pseudo-high densities
within the initial cluster, the core sample search approach is proposed
to identify the core samples from all local high-density samples. In
Phase 4, the clustering result of each initial cluster is composed of
core samples and their density-reachable, density-connected samples,
and extended samples.

PDCSN has the following merits: (1) ability to eliminate the de-
pendence of clustering results on user-specified parameters, (2) ability
to handle clusters with varying densities, (3) ability to discover non-
convex and convex shaped clusters, (4) ability to detect noise. The
contribution of this paper is as follows.

(1) We propose a self-adaptive neighborhood approach to estimate
the optimal neighborhood size without manual intervention.

(2) We propose a partitioning strategy to partition the initial clus-
ters, which can handle clusters with large variations in density.

(3) We propose a core sample search approach to distinguish adja-
cent clusters with similar densities.

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
(4) Experimental results on some synthetic, real-world, and im-
age datasets prove that PDCSN can discover clusters with arbitrary
shapes and densities in noise space. Besides, PDCSN is more suit-
able for clustering tasks on real-world datasets compared with several
state-of-the-art algorithms.

The remainder of the paper is organized as follows. Section 2
reviews the related work of clustering algorithms. Section 3 elaborates
on the principle of PDCSN. Section 4 compares the performance of
PDCSN with other clustering algorithms using several synthetic and
real-world datasets. Finally, the conclusion is given in Section 5.

2. Related work

As an important research field of data mining, clustering algorithms
are divided into different categories, such as partition-based, density-
based, grid-based, integrated, and hierarchical methods. Among the
partition-based methods, the most well-known clustering technique is
the 𝐾-means algorithm. 𝐾-means finds convex shaped clusters effi-
ciently, but the choice of 𝐾 greatly impacts the clustering results.
KMDD (Wang et al., 2018) overcomes the drawback that 𝐾-means fails
to find non-convex shaped clusters by using the density-based method
to merge multiple small subclusters into actual clusters.

The hierarchical clustering algorithms consider a top-down or
bottom-up way to partition different hierarchical structures. CURE
(Guha, Rastogi, & Shim, 1998) conducts a hierarchical agglomerate
clustering on subsets that have been randomly selected. Chameleon
(Karypis, Han, & Kumar, 1999) merges pairs of clusters by inter-
cluster connectivity and similarity. Both of the algorithms are somehow
suitable for discovering clusters with arbitrary shapes. However, they
do not perform well on high-dimensional data. DWMB (Rehman &
Belhaouari, 2022) resembles the hierarchal and density-based cluster-
ing algorithms, where density-based methods are used to merge small
sub-clusters that have been partitioned.

Density-based clustering algorithms have been widely applied due
to their ability to discover clusters with arbitrary shapes. Researchers
have proposed numerous variants of DPC. Chen et al. proposed CLUB
(Chen et al., 2016), which introduces the concept of mutual 𝑘-nearest
neighbors-connectedness to partition initial clusters. However, samples
residing in low-density regions will partition two adjacent clusters
together. SNN-DPC (Liu, Wang, & Yu, 2018) estimates local densities
based on shared nearest neighbor similarity. ClusterDv (Marques &
Orger, 2018) overcomes the effect of user-specified parameters by
automatically finding the number of clusters based on the separability
index. GADPC (Xu & Jiang, 2022) automatically determines the cen-
troids of clusters based on the turning angle and the graph connectivity
of centroids. Chowdhury et al. proposed UIFDBC (Chowdhury et al.,
2021), which introduces the separability of cluster centers to find the
optimal number of clusters. Zhou et al. proposed ICKDC (Zhou, Si, Sun,
Qu, & Hou, 2022), which utilizes a set of core samples as the center to
represent a cluster and classifies the remaining samples based on the
distribution information. DPC-AHS (Zhang, Miao, Tian, & Wang, 2022)
assigns some samples as candidate centers to find cluster centers by
residual analysis and linear regression.

Some variants of DBSCAN are proposed to improve the ability to
handle clusters with heterogeneous densities. SNN (Ertöz, Steinbach, &
Kumar, 2003) takes the shared similarity of the 𝑘 nearest neighbors
of samples as the density estimator to find core samples. However,
it highly depends on the specified 𝑀𝑖𝑛𝑝𝑡𝑠 and the minimum shared
similarity. GMDBSCAN (Xiaoyun, Yufang, Yan, & Ping, 2008) is a grid
partitioning-based algorithm, which determines the density definition
by the number of samples in each grid. However, when it deals with
high-dimensional data, the number of grid cells will increase exponen-
tially. By combining the ant clustering algorithm with PDBSCAN, Jiang
et al. construct 𝑘 nearest neighbor distance graphs to determine the 𝜀-
distance of each subset (Jiang, Li, Yi, Wang, & Hu, 2011). Although
3

this variant finds clusters with different densities, how to determine
the initial parameters becomes its main limitation. Avory Bryant et al.
proposed RNN-DBSCAN (Bryant & Cios, 2018), which uses the number
of reverse nearest neighbors as a new method to define the sample
density. Its advantage is that it only needs a specified number of
nearest neighbors as a global parameter to identify clusters with vary-
ing densities. Besides, it breaks the symmetry of distance metrics and
outperforms other similar algorithms (Cassisi, Ferro, Giugno, Pigola,
& Pulvirenti, 2013; Lv et al., 2016). Li et al. proposed ADBSCAN (Li,
Liu, Li, & Gan, 2020), which utilizes the inherent features of the 𝑘-
nearest neighbor graph to find dense regions and applies statistical
methods to filter samples in dense regions. Ros et al. proposed S-
DBSCAN (Ros, Guillaume, Riad, & El Hajji, 2022), which hybridizes
the concepts of 𝑘-nearest, distance, and density peak to assign variable
clusters without depending on global density thresholds. However,
RNN-DBSCAN, ADBSCAN, and S-DBSCAN are incapable of dealing with
adjacent clusters with similar densities because they ignore the density
distribution sparsity in high-dimensional space. KR-DBSCAN (Hu et al.,
2021) introduces the concepts of the reverse nearest neighbor and the
influence space to distinguish adjacent clusters with varying densities.

Some other variants of DBSCAN are proposed to address the high
dependence of clustering results on user-specified parameters. Chen
et al. proposed APSCAN (Chen, Liu, Qiu, & Lai, 2011), which applies the
affinity propagation method to detect the local densities of all samples
and generates a normalized density list as the input of the parameters
to generate the final clustering result. DSets-DBSCAN (Hou, Gao, &
Li, 2016) performs histogram equalization to the similarity matrices
and applies DBSCAN to extend the results of dominant sets that are
independent of user-specified parameters. Although both variants do
not rely on user-specified parameters, their ability to handle clusters
with varying densities is limited. Besides, their time overhead is very
high on big datasets. Zhang et al. proposed DC-SKCG (Zhang, Du,
Qu, & Sun, 2021), which optimizes the clustering process through a
conflict game approach based on the adaptive cut-off distance and the
shared 𝑘-nearest neighbors to reduce the parameter sensitivity of the
algorithm.

Some variants of DBSCAN are proposed to process high-dimen-
sional/large-scale datasets. Boonchoo et al. proposed GDCF (Boonchoo
et al., 2019). Aiming at the defects of grid-based DBSCAN, it utilizes
bitmap indexing and cluster forest to overcome the problems in the
neighbor explosion and redundancies in merging. 𝜇DBSCAN (Sarma
et al., 2019) is the DBSCAN algorithm based on micro-clusters, which
introduces distributed methods to break the sequential access of data
and uses the 𝜇R-tree and micro-clusters concept to optimize the pro-
cessing time of neighborhood queries. H-DBSCAN (Weng, Gou, & Fan,
2021) reduces the clustering time in two ways. The first one is to
apply HNSW technology instead of linear search and the second one
is to reduce samples presented to DBSCAN. BLOCK-DBSCAN (Chen
et al., 2021) first utilizes 𝜖∕2-norm ball sphere to identify the inter-
nal core blocks and then introduces a fast approximate algorithm to
determine the density-reachability between the internal core blocks.
OP-DBSCAN (Hanafi & Saadatfar, 2022) takes a part of the whole
samples as the operation set and adopts local samples to calculate the
density of each sample, thus greatly reducing the calculation cost of
clustering.

3. The algorithm: PDCSN

3.1. Clustering problem

The clustering problem solved in this paper is defined as follows: for
a given dataset 𝑋, the problem is to divide 𝐶 clusters 𝐶1, 𝐶2,… , 𝐶𝑐 . The
clusters satisfy the following conditions: each cluster contains at least
one sample (i.e., 𝐶𝑖 ≠ ∅, 𝑖 = 1, 2,… , 𝐶), and each sample is assigned
to one and only one cluster (i.e., 𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖 ≠ 𝑗), except for noisy

samples.

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 2. Illustration of density constraints. The neighborhood searching range of sample
𝑥 is expanded to 17, and 𝑥17 = 𝑚. Since 𝑥 does not satisfy the density constraint
(𝜌17𝑥 − 𝜌16𝑥 < 𝛼), the expansion terminates, i.e., CN(𝑥) = 16. The neighborhood searching
range of sample 𝑧 is expanded to 2, and 𝑧2 = 𝑞. Because of 𝐷𝑣𝑝(𝜌2𝑞 , 𝜌

2
𝑧) > 𝛽, CN(𝑧) = 1.

In order to address the clustering problem, this paper proposes a
novel density-based algorithm (PDCSN) that overcomes the challenge
of discovering clusters with arbitrary shapes, sizes, and densities in
noise space without user-specified parameters. PDCSN contains four
phases: (1) estimate the optimal neighborhood size (𝜆) and construct
the 𝜆-nearest neighbor graph; (2) discover local high/low-density sam-
ples and partition the initial clusters; (3) identify the core samples from
all local high-density samples; and (4) generate the structure of clusters
within each initial cluster.

3.2. Self-adaptive estimation of optimal neighborhood size

Let 𝑋 represent a dataset of size 𝑛 = |𝑋|, and the dimensional space
of each sample is 𝑑, ∀𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝑅𝑑 . All calculations in this paper
are expressed by Euclidean distance, where 𝑑(𝑥, 𝑦) =

√

𝛴𝑑
𝑖=1(𝑥𝑖 − 𝑦𝑖)2.

Moreover, since PDCSN relies on the technique of KNN, the basic
concepts of KNN-based density estimation include the following.

Definition 1 (𝑘-Nearest Neighbors). The 𝑘-nearest neighbors of sam-
ple 𝑥 are the 𝑘 most similar neighbors of 𝑥, denoted as 𝑁𝑘(𝑥) =
{

𝑦|𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥𝑘)
}

, where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋∕ {𝑥}, and 𝑥𝑘 is the 𝑘th
nearest neighbor of 𝑥.

Definition 2 (𝑘-Nearest Neighborhood Density). The 𝑘-nearest neighbor-
hood density of sample 𝑥 is the ratio of 𝑘 and 𝑑(𝑥, 𝑥𝑘), expressed as
𝜌𝑘𝑥 = 𝑘∕𝑑(𝑥, 𝑥𝑘).

Definition 3 (Variation Index of Relative Density). The variation in-
dex of relative density between samples 𝑥 and 𝑦 in the 𝑘-nearest
neighborhood, 𝐷𝑣𝑝(𝜌𝑘𝑥, 𝜌

𝑘
𝑦), is defined as:

𝐷𝑣𝑝(𝜌𝑘𝑥, 𝜌
𝑘
𝑦) = |

𝜌𝑘𝑥 − 𝜌𝑘𝑦
(𝜌𝑘𝑥 + 𝜌𝑘𝑦)∕2

| (1)

Inspired by the concept of natural neighborhood (Cheng, Zhu,
Huang, Wu, & Yang, 2019), PDCSN constructs a self-adaptive neigh-
borhood approach based on the differences and intrinsic properties
of sample density distributions. Compared with other variants based
on the 𝑘-nearest method, this approach can automatically estimate
the optimal neighborhood size 𝜆 (i.e., the optimal number of nearest
neighbors) without user specification. The intuition behind it is that
samples located in dense regions contain more neighbors, whereas sam-
ples located in sparse and cluttered regions contain fewer neighbors.
The estimation of 𝜆 is divided into two steps: (1) find the critical range
of the dense/sparse neighborhood of each sample 𝑥, CN(𝑥); (2) select
the largest critical range as 𝜆, i.e., 𝜆 = {CN(𝑥)|𝑥 ∈ 𝑋}. Specifically, con-
tinuously expand the neighborhood searching range 𝑘 (2 ≤ 𝑘 ≤ 𝑛), and
4

each time judge whether sample 𝑥 satisfies the following two density
constraints: (1) 𝜌𝑘𝑥−𝜌𝑘−1𝑥 > 𝛼 (𝛼 is the threshold) and (2) 𝐷𝑣𝑝(𝜌𝑘𝑥, 𝜌

𝑘
𝑥𝑘
) < 𝛽

(𝛽 is the threshold). The 1,… , 𝑘−1∕𝑘 neighborhood of 𝑥 is considered a
dense/sparse neighborhood when at least one of the above two density
constraints is not satisfied. At this moment, The searching range 𝑘 − 1
is CN(𝑥). The two constraints effectively characterize the variation of
the sample density distribution from different perspectives. Fig. 2 shows
an example explaining density constraints. The definition of the critical
range of the dense/sparse neighborhood is given by Definition 4.

In order to fill in the gaps with no user-specified parameters, this
approach automatically determines the above thresholds, 𝛼 and 𝛽.
The difference set of between the 𝑘 and 𝑘 + 1-nearest neighborhood
densities of all samples is expressed in ascending order as 𝑃 𝑘 =
Ascend(

{

𝑝|𝑝 = 𝜌𝑘+1𝑥 − 𝜌𝑘𝑥, 𝑥 ∈ 𝑋
}

). 𝐷𝑣𝑟𝑘 = Descend(
{

𝑣|𝑣 = 𝐷𝑣𝑝(max𝑘𝑖=1
(𝜌𝑘

𝑥𝑖
), 𝜌𝑘𝑥), 𝑥 ∈ 𝑋

}

) denotes the set of density variation indices of all
samples in the 𝑘-nearest neighborhood sorted in descending order,
where Ascend(⋅)/Descend(⋅) is the ascending/descending sort function.
To estimate 𝛼, PDCSN calculates the mean of the first half of 𝑃 𝑘

(𝛥𝑘 = mean(𝛴𝑛∕2
𝑖=1𝑃

𝑘)), considering that noise samples only account
for a tiny portion of the dataset. Generally, 𝛥2,… , 𝛥𝑛−1 show a stable
decreasing trend. Therefore, to strengthen the constraints of the density
distributions and avoid the effect of overlapping samples, the first
value that is not infinitesimal, 𝛥𝜏 (𝜏 = min

{

𝑘|𝛥𝑘 ≠ −∞, 2 ≤ 𝑘 ≤ 𝑛
}

),
is selected as 𝛼 by searching in ascending order from 𝛥2. In addition,
discrepancies in the density distribution of some datasets are large,
causing 𝛥𝜏 to be an outlier. So, 𝛥𝜏+1 and 𝛥⌊

√

𝑛⌋ are considered to correct
it. To estimate 𝛽, PDCSN calculates the mean of the first half of 𝐷𝑣𝑟𝑘

(𝛺𝑘 = mean(𝛴𝑛∕2
𝑖=1𝐷𝑣𝑟𝑘)) and selects the maximum of 𝛺𝜏 and 𝛺⌊

√

𝑛⌋ as
𝛽. 𝛼 and 𝛽 are given by Eq. (2).

𝛼 =

⎧

⎪

⎨

⎪

⎩

max(0, 𝛥𝜏− ∣ 𝛥𝜏+1 ∣) 𝐷𝑣𝑝(𝛥𝜏 , 𝛥⌊

√

𝑛⌋) > 0.9
max(0, 𝛥𝜏+ ∣ 𝛥𝜏+1 ∣) 𝐷𝑣𝑝(𝛥𝜏 , 𝛥⌊

√

𝑛⌋) ≤ 0.1
max(0, 𝛥𝜏) 𝑒𝑙𝑠𝑒

𝛽 = max(𝛺𝜏 , 𝛺⌊

√

𝑛⌋)

(2)

Definition 4 (Critical Range of the Dense/sparse Neighborhood). The
critical range of the dense/sparse neighborhood of sample 𝑥, CN(𝑥),
is 𝑘− 1 if (𝜌𝑘𝑥 − 𝜌𝑘−1𝑥 > 𝛼) ∩ (𝐷𝑣𝑝(𝜌𝑘𝑥, 𝜌

𝑘
𝑥𝑘
) < 𝛽) = 0 and ∀𝑟 ∈ {2,… , 𝑘 − 1}:

(𝜌𝑟𝑥 − 𝜌𝑟−1𝑥 > 𝛼) ∩ (𝐷𝑣𝑝(𝜌𝑟𝑥, 𝜌
𝑟
𝑥𝑟) < 𝛽) = 1, where 𝑘 is 2, 3,… , 𝑛.

3.3. Partition of the initial clusters

In order to distinguish clusters with large varying densities, PDCSN
considers that samples within a cluster are all connected by mutual 𝜆-
nearest neighbors. Furthermore, to prevent two adjacent clusters with
large variations in density are partitioned together, PDCSN breaks the
idea of treating all samples equally. It first uses the distance between
the sample and its 𝜆th nearest neighbor to discover local high-density
samples, as shown in Definition 5. After traversing all samples, a
set of local high-density samples 𝐿𝐻 is obtained. Figs. 3(a) and (c)
display the local high-density samples on the datasets of Compound
and Flame (Fränti & Sieranoja, 2018). Next, according to the concept of
M𝜆NN-connected given in Definition 6, the randomly selected sample
from 𝐿𝐻 and its M𝜆NN-connected samples are partitioned into the
same initial cluster, as described in Definition 7. If a sample 𝑥 is M𝜆NN-
connected to a sample 𝑦, they are incredibly similar and likely from the
same cluster, as shown in Fig. 3(b).

Definition 5 (Local High-Density Sample). A sample 𝑥 is a local high-
density sample if it satisfies the following conditions:

𝑑𝑖𝑠𝑡(𝑥, 𝑥𝜆) ≤
∑𝜆

𝑖=1 𝑑𝑖𝑠𝑡(𝑥
𝑖, (𝑥𝑖)𝜆) + min1≤𝑖≤𝜆 𝑑𝑖𝑠𝑡(𝑥𝑖, (𝑥𝑖)𝜆)

𝜆
(3)

where 𝑥𝑖 is the 𝑖th nearest neighbor of 𝑥, and (𝑥𝑖)𝜆 is the 𝜆th nearest
neighbor of 𝑥𝑖.

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 3. Partition of initial clusters on datasets Compound and Flame. The yellow samples in (a) and (c) are local high-density samples. Different colors represent different initial
clusters in (b) and (d). Besides, the clusters with pseudo-high densities are marked with black boxes in (b), and the initial cluster in (d) is composed of two adjacent clusters with
similar densities.
Definition 6 (Mutual 𝜆 Nearest Neighbors-Connected). A sample 𝑦 is
mutual 𝜆 nearest neighbors-connected (M𝜆NN-connected) to a sample
𝑥 if there is a chain of samples 𝑥1,… , 𝑥𝑙, 𝑥1 = 𝑥, 𝑥𝑙 = 𝑦 and satisfies
∀1 ≤ 𝑖 ≤ 𝑙 − 1: 𝑥𝑖 ∈ 𝐿𝐻 , 𝑥𝑖 ∈ 𝑁𝜆(𝑥𝑖+1) and 𝑥𝑖+1 ∈ 𝑁𝜆(𝑥𝑖).

Definition 7 (Initial Cluster). An initial cluster 𝐼𝑐 is a non-empty subset
of 𝑋 and satisfies the following conditions: ∀𝑥, 𝑦 ∈ 𝑋: if 𝑥 ∈ 𝐼𝑐, 𝑦 is
M𝜆NN-connected to 𝑥, then 𝑦 ∈ 𝐼𝑐.

3.4. Identification of core samples

Although the initial clusters successfully distinguish numerous clus-
ters with varying densities, there may be several adjacent clusters with
similar densities and clusters with pseudo-high densities within the
initial cluster. This is mainly because samples far from the cluster
centers are misclassified as local high-density samples. As illustrated in
Fig. 3(b), because samples No. 16–21 are near the edge of the cluster,
the clusters composed of them are spurious. Also, two adjacent clusters
with similar densities are partitioned into the same initial cluster due
to samples No. 30–34 near their junction in Fig. 3(d).

To further divide the initial clusters, the two constraints in Defi-
nition 8 are used to judge whether a local high-density sample 𝑥 is a
core sample. Precisely, (1) density heterogeneity constraint: 𝑥’s density
heterogeneity H(𝑥) is the ratio of the number of local high-density
samples to half the number of local low-density samples in 𝑁𝜆(𝑥). If 𝑥 is
near the cluster edge, then 𝑁𝜆(𝑥) has fewer local high-density samples
(i.e., H(𝑥) < 1). (2) shared similarity constraint: 𝑥’s shared similarity
set S(𝑥) consists of the shared similarities between 𝑥 and its 𝜆 nearest
neighbors, where the shared similarity is expressed as the number of
nearest neighbors the two samples share in 𝜆-nearest neighbors. If 𝑥
lies at the junction of adjacent clusters, then the 𝜆-nearest neighbor
of 𝑥 shares a smaller amount with 𝜆-nearest neighbors of the sample
near the cluster center (i.e., there are tiny elements in S(𝑥)). When
5

the estimated 𝜆 is small, there will be an abnormal judgment because
of the severe left deviation of the data distribution in S(𝑥). Thus,
3 is the lower limit of the elements in S(𝑥). These two constraints
are vital for the identification of clusters with heterogeneous density
distributions because the sample distribution sparsity is adequately
amplified. Figs. 4(a) and (b) show that samples No. 16–21 and No.
30–32 are filtered out by density heterogeneity and shared similarity
constraints, respectively.

Definition 8 (Core Sample). A sample 𝑥 is a core sample if 𝑥 ∈ 𝐿𝐻 and
satisfies the following conditions:

(1) H(𝑥) ≥ 1, where H(𝑥) =
|

{

𝑦|𝑦 ∈ 𝑁𝜆(𝑥), 𝑦 ∈ 𝐿𝐻
}

|

|

{

𝑧|𝑧 ∈ 𝑁𝜆(𝑥), 𝑧 ∉ 𝐿𝐻
}

|∕2 + 1
.

(2) max(3,min(S(𝑥))) > (𝜆−𝑚𝑒𝑑𝑖𝑎𝑛𝑥)∕2, where 𝑚𝑒𝑑𝑖𝑎𝑛𝑥 is the median
of S(𝑥) and S(𝑥) =

{

𝑙𝑒𝑛|𝑙𝑒𝑛 = |𝑁𝜆(𝑥) ∩𝑁𝜆(𝑦)|, 𝑦 ∈ 𝑁𝜆(𝑥)
}

.

3.5. Generation of clustering result

Generally, samples within a cluster consist of all density-reachable
and density-connected samples from a given core sample. However,
PDCSN performs a similar process to RNN-DBSCAN, i.e., it extends the
identified clusters and takes them as the final clustering result. Besides,
PDCSN differs from RNN-DBSCAN in that the samples in different initial
clusters are not density-reachable. This prevents clusters with varying
densities amongst different initial clusters from merging again.

Definitions 9–11 give the definitions for directly density-reachable,
density-reachable, and density-connected. The cluster is defined as
shown in Definition 12. Note that a boundary sample 𝑥 in cluster
𝐶 may be reachable from some core sample in another cluster 𝐶 ′.
To this end, PDCSN depends on sample ordering to assign boundary
samples. Furthermore, since the core samples are highly near the cluster
centroids, more unclustered samples are generated after all clusters

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 4. Identification of core samples on datasets Compound and Flame. Core samples are shown in red. Local high-density samples filtered out by the density heterogeneity
constraint are shown in yellow. Local high-density samples filtered out by the shared similarity constraint are shown in blue.
have been identified. Given a cluster 𝐶, PDCSN generates an extended
cluster of 𝐶, �̄�, by inserting unclustered samples into 𝐶. That is, �̄� is
a superset of 𝐶, �̄� ⊇ 𝐶. The unclustered sample 𝑥 is inserted into 𝐶 if
there is a clustered sample 𝑥𝑖 closest to 𝑥 in the 𝜆-nearest neighbors of
𝑥 and 𝜌𝑖𝑥 ≥ 𝜌𝑖

𝑥𝑖
∕2, as shown in Definition 13. After cluster extension is

complete, unclustered samples are considered noise samples.

Definition 9 (Directly Density-Reachable). The sample 𝑦 is directly
density-reachable from the sample 𝑥 if 𝑥 is the core sample, 𝑥, 𝑦 ∈ 𝐼𝑐,
and 𝑦 ∈ 𝑁𝑘(𝑥).

Definition 10 (Density-Reachable). The sample 𝑦 is the density-
reachable from the sample 𝑥, if there is the sample chain 𝑥1, . . . , 𝑥𝑙,
𝑥1 = 𝑥, 𝑥𝑙 = 𝑦 and satisfies the conditions: ∀1 ≤ 𝑖 ≤ 𝑙 − 1: 𝑥𝑖 is the
core sample, 𝑥𝑖+1 is directly density-reachable from 𝑥𝑖 or 𝑥𝑖 is directly
density-reachable from 𝑥𝑖+1.

Definition 11 (Density-Connected). The sample 𝑥 is density-connected
to the sample 𝑦 if there is the sample 𝑧 such that both 𝑥 and 𝑦 are
density-reachable from 𝑧.

Definition 12 (Cluster). A cluster 𝐶 is a non-empty subset of 𝑋 and
satisfies the following conditions:

(1) ∀𝑥, 𝑦 ∈ 𝑋: if 𝑥 ∈ 𝐶 and 𝑦 is density-reachable from 𝑥, then 𝑦 ∈ 𝐶
(2) ∀𝑥, 𝑦 ∈ 𝐶: 𝑥 is density-connected to 𝑦

Definition 13 (Extended Cluster). Given cluster 𝐶, extended cluster of
𝐶, �̄�, is equal to the union of 𝐶 and all samples 𝑥 that satisfy the
following conditions:

(1) 𝑥 ∉ 𝐶 and there exists no other cluster 𝐶 ′ ≠ 𝐶 such that 𝑥 ∈ 𝐶 ′.
(2) There exists a sample 𝑦 ∈ 𝐶 such that 𝑦 = 𝑥𝑚 ∈ 𝑁𝜆(𝑥), and there

exists no other sample 𝑧 ∈ (𝐶 ′∪𝐶) such that 𝑑𝑖𝑠𝑡(𝑥, 𝑧) < 𝑑𝑖𝑠𝑡(𝑥, 𝑦).
(3) The previous condition holds and 𝑝𝑚𝑥 ≥ 𝑝𝑚𝑦 ∕2.

Definition 14 (Noise Sample). Let �̄�1, �̄�2,… , �̄�𝑙 be the clusters of dataset
𝑋, a sample 𝑥 is a noisy sample if 𝑥 does not belong to any cluster
�̄�1≤𝑖≤𝑙.

3.6. PDCSN algorithm

Given a dataset 𝑋 as the input of PDCSN, in Phase 1, first traverse
𝑋 in arbitrary order and estimate the critical range of dense/sparse
neighborhood for each sample via Eq. (2) and Definition 4. Then choose
the largest critical range as the optimal neighborhood size (𝜆) and
6

Algorithm 1 PDCSN(𝑋)
Input: Dataset 𝑋 Output: Clustering result of 𝑋
Phase 1: Estimation of 𝜆
1: for each 𝑥 ∈ 𝑋 do
2: Calculate CN(𝑥) via Definition 4 and Eq. (2)
3: end for
4: 𝜆 = max({CN(𝑥)|𝑥 ∈ 𝑋})
Phase 2: Partition of initial clusters
1:

{

𝑥𝑖𝑐 = 0|𝑥 ∈ 𝑋
}

, 𝑖 = 1
2: Calculate a set of local high-density samples 𝐿𝐻 via Definition 5
3: while ∃𝑥𝑖𝑐 = 0 & 𝑥 ∈ 𝐿𝐻 do
4: 𝐼𝑐𝑖 =

{

𝑥, 𝑧|𝑧𝑖𝑐 = 0, 𝑧 ∈ 𝑁𝜆(𝑚), 𝑚 ∈ 𝑁𝜆(𝑧), 𝑚 ∈ 𝐼𝑐𝑖 ∩ 𝐿𝐻
}

5:
{

𝑧𝑖𝑐 = 𝑖|𝑧 ∈ 𝐼𝑐𝑖
}

,𝑖 = 𝑖 + 1
6: end while
Phase 3: Identification of core samples
1: 𝐶𝑜𝑟𝑒 = {}
2: for each 𝑥 ∈ 𝐿𝐻 do
3: if 𝑥 satisfies Definition 8 then
4: 𝐶𝑜𝑟𝑒 = 𝐶𝑜𝑟𝑒 ∪ {𝑥}
5: end if
6: end for
Phase 4: Generation of clustering results
1: Initial cluster id 𝑐 = 1,

{

𝑥𝑐𝑖𝑑 = 0|𝑥 ∈ 𝑋
}

,
{

𝑥𝑣𝑖𝑠𝑖𝑡 = 0|𝑥 ∈ 𝑋
}

2: for each 𝑥 ∈ 𝐶𝑜𝑟𝑒 & 𝑥𝑣𝑖𝑠𝑖𝑡 = 0 do
3: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 =

{

𝑥, 𝑦|𝑦 ∈ 𝑁𝜆(𝑝), 𝑦𝑖𝑐 = 𝑝𝑖𝑐 , 𝑝 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∩ 𝐶𝑜𝑟𝑒, 𝑝𝑣𝑖𝑠𝑖𝑡 = 0
}

4:
{

𝑝𝑣𝑖𝑠𝑖𝑡 = 1|𝑝 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∩ 𝐶𝑜𝑟𝑒
}

5: if 𝐹 𝑙𝑎𝑔 =
{

𝑝𝑐𝑖𝑑 |𝑝𝑐𝑖𝑑 ≠ 0, 𝑝 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∩ 𝐶𝑜𝑟𝑒
}

== ∅ then
6:

{

𝑦𝑐𝑖𝑑 = 𝑐|𝑦 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 𝑦𝑐𝑖𝑑 = 0
}

, 𝑐 = 𝑐 + 1
7: else
8: 𝑆𝑎𝑚𝑝𝑙𝑒 =

{

𝑦|𝑦 ∈ 𝑋, 𝑦𝑐𝑖𝑑 ∈ 𝐹 𝑙𝑎𝑔
}

∪ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟
9:

{

𝑦𝑐𝑖𝑑 = min(𝐹 𝑙𝑎𝑔)|𝑦 ∈ 𝑆𝑎𝑚𝑝𝑙𝑒
}

10: end if
11: end for
12: 𝑈𝐶 =

{

𝑥|𝑥 ∈ 𝑋, 𝑥𝑐𝑖𝑑 = 0
}

13: for each 𝑥 ∈ 𝑈𝐶 do
14: for each 𝑦 = 𝑥𝑖 ∈ 𝑁𝜆(𝑥) do
15: if 𝑦𝑐𝑖𝑑 ≠ 0 and 𝑦 ∉ 𝑈𝐶 then
16:

{

𝑥𝑐𝑖𝑑 = 𝑦𝑐𝑖𝑑 |𝜌𝑖𝑥 ≥ 𝜌𝑖𝑦∕2
}

17: break
18: end if
19: end for
20: end for
21: 𝑛𝑜𝑖𝑠𝑒 =

{

𝑥|𝑥𝑖𝑑 = 0, 𝑥 ∈ 𝑋
}

22: return 𝑋𝑐𝑖𝑑

construct the 𝜆 nearest neighbor graph as a parameter for subsequent
operations. In Phase 2, PDCSN first discovers all local high-density
samples via Eq. (3). Then, a randomly selected local high-density

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 5. The implementation of PDCSN.
sample and its M𝜆NN-connected samples are partitioned into the same
initial cluster based on Definitions 6 and 7. In Phase 3, the local
high-density samples that satisfy Definition 8 are identified as the core
samples. In Phase 4, traversed in samples order for all samples, if the
current sample is the core sample, it and its density-reachable and
density-connected samples are assigned to the same cluster. Finally, the
extended clusters of all clusters are obtained as the algorithm’s output
according to Definition 13. Algorithm 1 outlines the process of PDCSN.
Fig. 5 summarizes the implementation of PDCSN.

3.7. Complexity analysis

The complexity of PDCSN depends on the following five steps: (1)
calculate the nearest neighbors; (2) estimate the optimal neighborhood
size 𝜆; (3) partition the initial clusters; (4) identify the core samples;
(5) generate the cluster structures.

The naive solution to nearest neighbor problems in the first step is
𝑂(𝑛2). Many existing methods solve the nearest neighbor problem, such
as space-partitioning tree (𝑘-d tree (Bentley, 1975), R-tree (Guttman,
1984)) and locality hashing techniques (Wang et al., 2014). The 𝑘-d
tree considered in DBSCAN reduces the computational complexity to
7

𝑂(𝑛×log 𝑛). However, these approaches are closely related to the density
variations and distributions of the data. In BLOCK-DBSCAN (Chen
et al., 2021), the cover tree (Beygelzimer, Kakade, & Langford, 2006)
is introduced to accelerate the calculation of nearest neighbors. All
these approaches can be applied in PDCSN. Since this paper chooses
the 𝑘-d tree to calculate and store the 𝜆 nearest neighbors, in the first
step, the average/worst time complexity is 𝑂(𝑛 × log 𝑛)/𝑂(𝑛2), and the
average/worst space complexity is 𝑂(𝜆 × 𝑛)/𝑂(𝑛2). In the second step,
because the sample’s 1,2, . . . ,

√

𝑛 nearest neighbor density and the
critical range of the dense/sparse neighborhood need to be calculated
and stored, the time/space complexity is 𝑂(𝑛1.5)/𝑂(𝑛). In the third step,
the time/space complexity required to judge local high-density samples
is 𝑂(𝜆 × 𝑛)/𝑂(𝑛). The time/space complexity of assigning samples to
the initial clusters is 𝑂(𝜆 × 𝑛)/𝑂(𝑛). As a result, the overall time/space
complexity of the third step is 𝑂(𝜆 × 𝑛)/𝑂(𝑛). The complexity of the
fourth step depends on solving the shared similarity problem and
storing the core samples. The complexity of solving the number of
nearest neighbors the two samples share in 𝜆-nearest neighbors is 𝑂(𝜆).
Thus, the time/space complexity of the fourth step is 𝑂(𝜆2 × 𝑛)/𝑂(𝑛).
The time/space complexity of the fifth step is 𝑂(𝜆 × 𝑛)/𝑂(𝑛).

Combining the above five steps, the average/worst time complexity
of PDCSN is 𝑂(𝑛×log 𝑛+(2×𝜆+𝜆2)×𝑛+𝑛1.5)/𝑂(𝑛2+(2×𝜆+𝜆2)×𝑛+𝑛1.5). The

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 6. Clustering results on D1. In parentheses is the number of clusters.
Table 1
Time and space complexity for PDCSN.

Step Time complexity Space complexity

Calculate nearest neighbors 𝑂(𝑛 × log 𝑛) 𝑂(𝜆 × 𝑛)
Estimate 𝜆 𝑂(𝑛1.5) 𝑂(𝑛)
Partition initial clusters 𝑂(𝜆 × 𝑛) 𝑂(𝑛)
Identify core samples 𝑂(𝜆2 × 𝑛) 𝑂(𝑛)
Generate clusters 𝑂(𝜆 × 𝑛) 𝑂(𝑛)
Average cost 𝑂(𝑛 × log 𝑛 + (2 × 𝜆 + 𝜆2) × 𝑛 + 𝑛1.5) 𝑂((4 + 𝜆) × 𝑛)
Worst cost 𝑂(𝑛2 + (2 × 𝜆 + 𝜆2) × 𝑛 + 𝑛1.5) 𝑂(4 × 𝑛 + 𝑛2)

average/worst space complexity of PDCSN is 𝑂((4+𝜆)×𝑛)/𝑂(4×𝑛+𝑛2).
The space complexity and time complexity of PDCSN are shown in
Table 1.

4. Experiments

In this section, to verify the clustering performance, PDCSN is
compared with six typical clustering algorithms, including DBSCAN
(DBS) (Ester et al., 1996), ADBSCAN (ADBS) (Li et al., 2020), RNN-
DBSCAN (RNN) (Bryant & Cios, 2018), DSets-DBSCAN (DSets) (Hou
et al., 2016), DPC (Rodriguez & Laio, 2014), and OPTIC (OPT) (Ankerst
et al., 1999). Since the initial parameters of the algorithms influence
the clustering results, all initial parameters of these algorithms are
set as the suggested values given by the original references. The ini-
tial parameters of these algorithms are described in Table 2. Various
public datasets are utilized, including 9 synthetic datasets (Fränti &
Sieranoja, 2018; Karypis et al., 1999), 10 real-world datasets from the
UCI machine learning repository (Dua & Graff, 2017), the ORL face
dataset (Samaria & Harter, 1994), and the USPS digital recognition
dataset (Wolf, Hassner, & Maoz, 2011). In addition, RNN, ADBS, DSets,
and DPC are obtained from open-source codes that the original author
provided. DBS and OPT are obtained from scikit-learn. To accurately
measure the performance of the clustering algorithm, four well-known
performance evaluation metrics are applied, including Accuracy (ACC),
F-measure (F), Adjusted Rand Index (ARI), and Normalized Mutual
Information (NMI).

4.1. Clustering on the synthetic datasets

The 7 synthetic datasets applied in this experiment are divided into
two categories. The first category is 2 synthetic datasets without ground
truth, namely D1 and D2. The second category is 5 synthetic datasets
8

with ground truth, namely Spril, Aggregation, Jain, Compound, and
D31. These are classic datasets that are valuable for the evaluation
of clustering performance. Table 3 lists the characteristics of these
datasets, including the number of samples (𝑛), dimensionality (𝑑), and
the standard number of clusters (𝑐). Since the first category of synthetic
datasets has no ground truth, the performance of algorithms can only
be analyzed from the clustering result graph. The parameter settings of
the algorithms on the second category of synthetic datasets are listed
in Table 4. Moreover, the ACC, F, NMI, and ARI scores on the second
category of datasets are shown in Table 5.

(1) D1 consists of clusters with small variations in density. Besides,
Noise samples are located in the space between clusters. The clustering
results of seven algorithms on D1 are shown in Fig. 6. Only PDCSN and
RNN successfully identify the cluster structures and detect background
samples as noise samples. Although DBS identified the approximate
shapes of the clusters, clusters with sparse density distributions are
misidentified by it. The ability of ADBS to detect high-density regions
is limited, resulting in its inability to identify core samples within
sparse clusters correctly. Since DSets cannot divide clusters with similar
densities close to each other into different dominant sets, it merges two
adjacent clusters on the right. DPC identifies no clusters due to the
shortcomings of the aggregation strategy. OPT misclassifies samples in
sparse clusters as noise samples.

(2) D2 contains irregular non-spherical and regular spherical clus-
ters in the noise space. Furthermore, the significant intervals in the
distance between clusters alleviate the difficulty of clustering. In Fig. 7,
PDCSN, ADBS, RNN, and DBS identify the correct cluster structures.
DSets incorrectly classify the two adjacent clusters with similar densi-
ties on the upper right together. Neither DPC nor OPT can identify the
correct number of clusters.

(3) Spril consists of 3 spiral-shaped clusters with similar densities.
Aggregation contains 7 spherical-shaped clusters with small variations
in density. As shown in Figs. 8 and 9, only DSets detect the incorrect
number of clusters. Because OPT, ADBS, and DBS find few core samples,
they mistake the samples within the clusters to as noisy samples. In
Table 5, the ACC, F, NMI, and ARI scores of PDCSN are optimal on Spril.
Although the F, NMI, and ARI scores of PDCSN are not the highest on
Aggregation, the differences from the highest values are negligible. The
difference between the minimum value of the four metrics in PDCSN
and the maximum value in RNN is only 0.5%.

(4) Jain consists of two clusters with large varyings in density.
Fig. 10 shows PDCSN, ADBS, and OPT successfully identifying clusters.
RNN classifies edge samples as noise samples. Because DBS and DSets
cannot handle clusters with different densities, they misidentify the

Expert Systems With Applications 227 (2023) 120195

9

S. Xing et al.

Fig. 7. Clustering results on D2. In parentheses is the number of clusters.

Fig. 8. Clustering results on Spril. In parentheses is the number of clusters.

Fig. 9. Clustering results on Aggregation. In parentheses is the number of clusters.

Expert Systems With Applications 227 (2023) 120195

10

S. Xing et al.

Fig. 10. Clustering results on Jain. In parentheses is the number of clusters.

Fig. 11. Clustering results on Compound. In parentheses is the number of clusters.

Fig. 12. Clustering results on D31. In parentheses is the number of clusters.

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 13. The ORL face dataset.
Fig. 14. Part of the initial clusters partitioned by PDCSN on the ORL face dataset.
Table 2
User-specified parameters description of algorithms.

Algorithm Parameter description

PDCSN() none
ADBS(𝑘∕𝑛𝑜𝑖𝑠𝑒𝑝) 𝑘: the number of nearest neighbors

𝑛𝑜𝑖𝑠𝑒𝑝: the proportion of noise
RNN(𝑘) 𝑘: the number of nearest neighbors
DSets(𝑀𝑖𝑛𝑝𝑡𝑠) 𝑀𝑖𝑛𝑝𝑡𝑠: the least number of samples in the specified neighborhood
DPC(𝜆) 𝜆: the percentage of the average number of neighbors
DBS(𝑀𝑖𝑛𝑝𝑡𝑠∕𝐸𝑝𝑠) 𝑀𝑖𝑛𝑝𝑡𝑠: the least number of samples in the 𝐸𝑝𝑠- neighborhood

𝐸𝑝𝑠: the neighborhood radius of each sample
OPT(𝑘) 𝑘: the number of nearest neighbors
cluster on the upper left as multiple. DPC divides samples from different
clusters together. Compound contains multiple clusters with various
densities, where there are two clusters with extremely unbalanced
distributions on the right. In Fig. 11, only PDCSN recognizes the correct
distribution of clusters. Neither ADBS, DBS, RNN, nor OPT can handle
clusters with unbalanced distribution in density. The cluster on the
upper left is incorrectly divided by DSets. The evaluation metrics of
PDCSN in Table 5 confirm that it can handle clusters with different
densities.

(5) D31 contains regular spherical clusters. Only PDCSN, PDC, and
OPT correctly identify the structure of all clusters on D31, as shown in
Fig. 12. ADBS, RNN, DSets, and DBS misclassify two adjacent clusters
with similar densities on the middle right. Since DPC cannot identify
noise samples, its ACC, F, NMI, and ARI scores are the highest on
D31 from Table 5. The remaining algorithms can identify the varying
number of noise samples. Although the four evaluation metrics scores
of PDCSN are not the highest, they are the best among the other five
algorithms.

In summary, the experimental results on synthetic datasets with
different densities and shapes demonstrate the excellent performance of
PDCSN on low-dimensional datasets. Specifically, the clustering results
on D1 and D2 validate the ability of PDCSN to handle clusters in the
noise space. The clustering results on Spril, Aggregation, Jain, and
Compound demonstrate that PDCSN can handle clusters with highly
heterogeneous densities and extremely unbalanced distributions. Fur-
thermore, the ability of PDCSN to handle adjacent clusters with small
variations in density is confirmed on D31.
11
Table 3
Characteristics of the synthetic datasets.

DataSet 𝑛 𝑑 𝑐

D1 8000 2 8
D2 10000 2 9
Spril 312 2 3
Aggregation 788 2 7
Jain 373 2 2
Compound 399 2 6
D31 3100 2 31

Table 4
The parameter settings on the second category of synthetic datasets.

Algorithm Parameter Datasets

Spril Aggregation Jain Compound D31

ADBS 𝑘 26 30 40 35 75
𝑛𝑜𝑖𝑠𝑒𝑝 0 0.15 0 0.1 0.45

RNN 𝑘 2 13 17 8 45
DSets 𝑀𝑖𝑛𝑝𝑡𝑠 3 4 5 4 4
DPC 𝜆 2 1 2 2 2
DBS 𝐸𝑝𝑠 2 2 2.5 1.5 1

𝑀𝑖𝑛𝑝𝑡𝑠 2 14 3 3 40
OPT 𝑘 10 25 10 12 45

4.2. Clustering on the real-world datasets

The 8 real-world datasets from UCI are iris, wine, seed, breast, ban-
knote, digit, htru2, and ecoil. Note that wine, seed, breast, and htru2
have been standardized in advance in PDCSN. The high dimensionality

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Table 5
Performances for algorithms on the second category of synthetic datasets.

DataSet PDCSN ADBS RNN DSets DPC DBS OPT

Spril ACC 1.0 1.0 1.0 0.462 1.0 1.0 0.776
F 1.0 1.0 1.0 0.512 1.0 1.0 0.742
NMI 1.0 1.0 1.0 0.662 1.0 1.0 0.687
ARI 1.0 1.0 1.0 0.412 1.0 1.0 0.639

Aggregation ACC 0.998 0.986 0.998 0.869 0.998 0.991 0.964
F 0.997 0.983 0.998 0.908 0.998 0.988 0.967
NMI 0.993 0.973 0.996 0.932 0.995 0.978 0.938
ARI 0.996 0.978 0.998 0.880 0.997 0.984 0.958

Jain ACC 1.0 1.0 0.995 0.885 0.861 0.928 1.0
F 1.0 1.0 0.994 0.959 0.788 0.976 1.0
NMI 1.0 1.0 0.973 0.777 0.505 0.865 1.0
ARI 1.0 1.0 0.983 0.901 0.515 0.941 1.0

Compound ACC 0.997 0.904 0.897 0.917 0.682 0.975 0.927
F 0.998 0.944 0.914 0.959 0.693 0.980 0.945
NMI 0.992 0.915 0.878 0.939 0.792 0.946 0.896
ARI 0.997 0.926 0.884 0.945 0.592 0.974 0.926

D31 ACC 0.949 0.900 0.910 0.605 0.967 0.894 0.931
F 0.915 0.850 0.870 0.604 0.935 0.830 0.882
NMI 0.938 0.915 0.922 0.840 0.957 0.908 0.022
ARI 0.912 0.845 0.867 0.587 0.933 0.824 0.878
Table 6
Characteristics of real-world datasets.

DataSet 𝑛 𝑑 𝑐

iris 150 4 3
wine 178 13 3
seed 210 7 3
breast 699 10 2
banknote 1372 4 2
digit 1797 64 10
htru2 17898 8 2
ecoil 336 7 8

and authenticity of these datasets allows for a more comprehensive
validation of the algorithm’s performance. Table 6 lists 𝑛, 𝑑, and 𝑐 on
the 8 real-world datasets. The parameter settings of the algorithms on
these datasets are shown in Table 7.

The ACC, F, NMI, ARI, and Clu (the number of clusters) of each
algorithm on these datasets are shown in Table 8. From the perspective
of the evaluation metrics: the NMI and ARI scores of PDCSN are the
best on 8 real-world datasets. Except on htru2, PDCSN’s ACC and F
scores are the maxima on other datasets. For example, the mean of ACC,
F, NMI, and ARI of PDCSN on wine is 14% higher than the second-
ranked OPT. The mean of the four evaluation metrics of PDCSN on
seed is 6.5% higher than the second-ranked ADBS. The mean of the
four evaluation metrics of PDCSN on breast is 5.6% higher than the
second-ranked DSets. For the 64-dimensional dataset digit, PDCSN still
has the performance of rank one. In addition, it can be seen from the
four evaluation metrics scores of 8 real-world datasets that PDCSN has
a relatively stable performance compared with the other algorithms.
The ARI scores of ADBS on the datasets breast and banknote differ by
80.3%, while the ARI scores of PDCSN differ by only 22.3%. The NMI
scores of RNN on htru2 and ecoil differ by 35.6%, while the NMI scores
of PDCSN differ by only 21.6%. From the perspective of the number of
clusters: except for the datasets digit, ecoil, and htru2, PDCSN extracts
the optimal number of clusters on the other 5 datasets. ADBS and RNN
only determine the optimal number of clusters on 3 datasets. DBS and
OPT only identify the optimal number of clusters on 2 datasets. DSets
finds the wrong number of clusters on all datasets. The Clu of DPC is
not convincing because the number of clusters is determined by the
user.

In conclusion, satisfactory results on these datasets demonstrate that
PDCSN can perform excellently on real-world datasets. Furthermore,
the clustering stability of our algorithm is more reliable than other
12

algorithms.
4.3. Clustering on the high-dimensional/large-scale datasets

The 6 high-dimensional/large-scale datasets are utilized further
to verify the performance of PDCSN. The ORL face dataset contains
40 clusters, each with 10 images of faces that have different facial
expressions. The ORL face dataset is shown in Fig. 13, where images
of the same color correspond to a cluster. In this paper, the images
are converted into a matrix that can be recognized by the machine,
where each row vector represents a facial image. Since the image size
is 92 × 112 pixels, the converted matrix size is 400 × 10304. The
USPS digital recognition dataset contains 10 clusters, each composed of
16 × 16 pixel digital images. Letter and MNIST are real-world datasets,
where Letter consists of 20,000 pictures of the alphabet, and MNIST
is composed of 60,000 gray handwritten digital images with 28 × 28
pixels points. Birch2 and Worms are synthetic datasets, where Birch2
is a 2-dimensional dataset with a sinusoidal curve, and Worms is a 2-
dimensional dataset with worm like shapes. Table 9 lists 𝑛, 𝑑, and 𝑐 on
these high-dimensional/large-scale datasets. The parameter settings of
the algorithms on these datasets are displayed in Table 10. Note that the
DPC and Dsets algorithms were not able to complete their operations on
the Birch2 and Worms datasets within the given time limit of 3 h, and
thus their results are labeled as N/A (not applicable). Overall, these
datasets provide a diverse set of challenges for clustering algorithms,
ranging from high-dimensional image datasets to large-scale synthetic
datasets with irregular shapes.

The ACC, F, NMI, ARI, and Clu of each algorithm on high-
dimensional/large-scale datasets are listed in Table 11. The average
score of the four evaluation metrics of PDCSN is the highest among the
seven algorithms on these datasets. For example, on the ORL, the ARI
score of PDCSN is 72.9%, which is 26.4% higher than that of RNN and
26.5% higher than that of DBS. The F score of PDCSN is 49.6% higher
than that of OPT. The ACC score of PDCSN ranks second, only 1.8%
away from the highest value of 74.3%. the excellent performance of
PDCSN on the ORL face dataset is mainly attributed to our proposed
partitioning strategy. As shown in Fig. 14, the partially correct initial
clusters partitioned by PDCSN (more than five samples in each initial
cluster) are marked with red boxes, where there are 23 red boxes in
total. PDCSN still has the best performance on the USPS dataset. Its
NMI score is 53.7% higher than DPC and 17.5% higher than RNN. On
the Letter dataset, only PDCSN correctly identifies half of the clusters,
which is better than the other algorithms. On the MNIST dataset,
PDCSN has a mean of 15.2% higher performance on the four metrics
compared to ADBS and 17.4% higher compared to RNN. In addition,
on datasets Birch2, Worms, Letter, and MNIST, PDCSN identifies the

number of clusters closest to the true value. The optimal performance

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Table 7
The parameter settings on real-world datasets.

Algorithm Parameter Datasets

iris wine seed breast banknote digit htru2 ecoil

ADBS 𝑘 41 29 48 39 71 58 110 58
𝑛𝑜𝑖𝑠𝑒𝑝 0 0 0.45 0.05 0.05 0.35 0.2 0.45

RNN 𝑘 5 4 5 19 37 3 3 3
DSets 𝑀𝑖𝑛𝑝𝑡𝑠 4 4 4 5 4 4 4 4
DPC 𝜆 2 2 2 2 2 2 2 2
DBS 𝐸𝑝𝑠 1 2.5 1 3 2 21 1 0.163

𝑀𝑖𝑛𝑝𝑡𝑠 10 10 14 25 16 4 70 9
OPT 𝑘 25 20 21 45 50 26 10 40
Table 8
Performances for algorithms on the real-world datasets.

DataSet PDCSN ADBS RNN DSets DPC DBS OPT

iris ACC 0.873 0.680 0.747 0.660 0.833 0.667 0.673
F 0.807 0.741 0.738 0.740 0.762 0.746 0.744
NMI 0.739 0.717 0.674 0.720 0.717 0.734 0.723
ARI 0.714 0.564 0.638 0.558 0.633 0.568 0.566
Clu 3 2 4 2 3 2 2

wine ACC 0.921 0.708 0.652 0.663 0.635 0.702 0.831
F 0.879 0.652 0.669 0.641 0.686 0.638 0.746
NMI 0.805 0.608 0.566 0.398 0.586 0.531 0.656
ARI 0.822 0.537 0.492 0.388 0.454 0.424 0.628
Clu 3 8 3 2 2 2 3

seed ACC 0.919 0.895 0.800 0.605 0.886 0.638 0.795
F 0.867 0.807 0.739 0.644 0.803 0.606 0.769
NMI 0.751 0.662 0.617 0.456 0.698 0.546 0.687
ARI 0.804 0.717 0.627 0.411 0.703 0.442 0.676
Clu 3 3 4 2 3 3 3

breast ACC 0.889 0.381 0.808 0.859 0.773 0.817 0.815
F 0.845 0.349 0.706 0.791 0.726 0.715 0.716
NMI 0.541 0.309 0.390 0.489 0.309 0.299 0.288
ARI 0.683 0.184 0.402 0.592 0.275 0.400 0.395
Clu 2 28 2 3 2 1 1

banknote ACC 0.972 0.962 0.853 0.541 0.792 0.699 0.681
F 0.953 0.942 0.875 0.559 0.803 0.686 0.539
NMI 0.834 0.809 0.700 0.445 0.665 0.537 0.395
ARI 0.906 0.887 0.771 0.345 0.660 0.511 0.271
Clu 2 3 3 8 4 7 3

digit ACC 0.874 0.850 0.769 0.110 0.590 0.788 0.644
F 0.844 0.820 0.748 0.180 0.478 0.695 0.451
NMI 0.855 0.837 0.807 0.014 0.736 0.797 0.691
ARI 0.828 0.801 0.724 0.002 0.389 0.661 0.361
Clu 12 13 35 3 9 17 7

htru2 ACC 0.898 0.919 0.828 0.727 0.941 0.930 0.907
F 0.897 0.906 0.848 0.723 0.928 0.922 0.907
NMI 0.440 0.358 0.194 0.180 0.376 0.296 0.004
ARI 0.547 0.543 0.333 0.260 0.478 0.511 0.015
Clu 3 2 204 8 2 2 1

ecoil ACC 0.750 0.658 0.693 0.595 0.625 0.631 0.732
F 0.785 0.674 0.676 0.612 0.605 0.673 0.756
NMI 0.656 0.522 0.550 0.442 0.454 0.507 0.601
ARI 0.698 0.506 0.526 0.437 0.376 0.520 0.655
Clu 3 2 8 4 2 2 3
Table 9
Characteristics of the high-dimensional/large-scale datasets.

DataSet 𝑛 𝑑 𝑐

ORL 400 10304 40
USPS 9298 256 10
Birch2 100000 2 100
Worms 105600 2 35
Letter 20000 16 26
MNIST 60000 768 10
13
Table 10
The parameter settings on high-dimensional/large-scale datasets.

Dataset ADBS RNN DSets DPC DBS OPT
𝑘∕𝑛𝑜𝑖𝑠𝑒_𝑝 𝑘 𝑚𝑖𝑛𝑝𝑡𝑠 𝜆 𝑚𝑖𝑛𝑝𝑡𝑠∕𝑒𝑝𝑠 𝑘

ORL 25/0.0 3 4 2 1/3270 4
USPS 119/0.5 2 4 2 10/3 10
Birch2 104/0.0 34 N/A N/A 850/0.095 35
Worms 61/0.5 114 N/A N/A 550/0.1 9
Letter 114/0.2 29 4 2 250/2.2 22
MNIST 500/0.4 10 4 2 15/12 20

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Table 11
Performances for algorithms on the high-dimensional/large-scale datasets.

Dataset Metrics PDCSN ADBS RNN DSets DPC DBS OPT

ORL ACC 0.725 0.743 0.678 0.15 0.622 0.628 0.613
F 0.735 0.688 0.480 0.077 0.579 0.479 0.240
NMI 0.923 0.909 0.837 0.366 0.868 0.853 0.789
ARI 0.729 0.680 0.465 0.035 0.569 0.464 0.211
Clu 65 45 42 7 77 61 44

USPS ACC 0.561 0.515 0.330 0.239 0.165 0.343 0.167
F 0.523 0.416 0.275 0.238 0.194 0.280 0.194
NMI 0.570 0.568 0.395 0.165 0.033 0.386 0.009
ARI 0.443 0.308 0.125 0.071 0.010 0.127 0.001
Clu 5 16 208 4 91 5 1

Birch2 ACC 0.971 0.850 0.957 N/A N/A 0.585 0.540
F 0.938 0.846 0.875 N/A N/A 0.438 0.139
NMI 0.970 0.974 0.960 N/A N/A 0.879 0.810
ARI 0.937 0.844 0.873 N/A N/A 0.429 0.123
Clu 100 102 100 N/A N/A 60 53

Worms ACC 0.369 0.300 0.364 N/A N/A 0.289 0.203
F 0.332 0.150 0.269 N/A N/A 0.105 0.101
NMI 0.570 0.430 0.536 N/A N/A 0.416 0.317
ARI 0.544 0.298 0.226 N/A N/A 0.046 0.272
Clu 32 31 21 N/A N/A 25 8

Letter ACC 0.535 0.265 0.174 0.105 0.217 0.111 0.301
F 0.437 0.113 0.083 0.078 0.121 0.098 0.091
NMI 0.702 0.439 0.300 0.164 0.427 0.155 0.399
ARI 0.407 0.047 0.011 0.004 0.154 0.029 0.021
Clu 25 31 36 19 25 3 21

MNIST ACC 0.375 0.160 0.114 0.114 0.312 0.194 0.112
F 0.303 0.184 0.182 0.163 0.282 0.198 0.183
NMI 0.343 0.044 0.104 0.002 0.306 0.173 0.001
ARI 0.183 0.210 0.109 0.001 0.181 0.035 0.001
Clu 5 25 5 3 19 4 1
t
t

a
i
f
e
w
d
d
I
n
F

of PDCSN on these datasets is mainly attributed to the proposed core
sample search approach that breaks the shortcomings of the traditional
distance metric by using specific sample distribution attributes instead
of distance information to identify core samples in high-dimensional
spaces. This approach avoids the failure of the distance metric in high-
dimensional spaces to some extent. The experimental results on these
six datasets show that PDCSN outperforms the other six algorithms in
high-dimensional and large-scale datasets.

4.4. Correctness of the proposed self-adaptive neighborhood estimation

In order to avoid the effect of user-specified parameters, this paper
proposes a self-adaptive neighborhood approach to estimate the critical
range of the dense/sparse neighborhood of each sample 𝑥, CN(𝑥), iter-
atively and select the maximum value of {CN(𝑥)|𝑥 ∈ 𝑋} as the optimal
neighborhood size 𝜆 (i.e., the optimal number of nearest neighbors).
Two hyperparameters, 0.9 and 0.1, are given in the estimation process
to determine numerical similarity.

To verify the rationality and effectiveness of our proposed self-
adaptive neighborhood approach, we compare the performance of PD-
CSN with different 𝜆 on 4 datasets (e.g., wine, Compound, banknote,
ORL). As shown in Fig. 15, the following trends can be found for 4
datasets: when 𝜆 is small or large, the samples cannot form clusters
correctly. In addition, ARI and NMI are at high levels when clus-
ters are correctly identified, and conversely, both ARI and NMI are
at low levels. The above trends reveal that ARI and NMI positively
correlate with suitable 𝜆. In Fig. 15, the 𝜆 of the triangles mark is
obtained by our proposed self-adaptive neighborhood approach. The
𝜆 values estimated by this approach are approximate optimal solu-
tions on datasets wine, Computer, banknote, and ORL. Experimental
results on several two-dimensional, high-dimensional, and ultra-high-
dimensional datasets validate the correctness and robustness of our
14

proposed approach.
4.5. Running efficiency

To verify the running efficiency of PDCSN, its running time is
compared with that of the other six algorithms on all experimental
datasets. For a fair comparison, each algorithm is executed in Python
on a 𝑃𝐶 with 𝐼𝑛𝑡𝑒𝑙 𝑋𝑒𝑜𝑛 𝑊 − 2223 𝐶𝑃𝑈 and 32 𝐺𝐵 of 𝑅𝐴𝑀 .
Furthermore, PDCSN uses the 𝑘d-tree to speed up the computation of
nearest neighbors. Table 12 lists the running time (unit: s) of the seven
algorithms on all datasets, where the running time is the average of ten
runs.

As shown in Table 12, PDCSN is the second fastest method on small-
scale datasets (𝑛< 8000), which outperforms ADBS, DSets, DPC, OPT,
and DBS in terms of running time. In addition, the difference between
the running time of PDCSN and the optimal running time is negligible.
For large-scale datasets (𝑛> 8000), since PDCSN integrates more neigh-
bor information to describe the sample density, it undoubtedly adds
considerable time overhead in computing the nearest neighbor and
shared similarity problems. For example, on dataset D1, the estimated
𝜆 of PDCSN is 48, which is 11 larger than the optimal 𝑘 of RNN and 6
higher than the optimal 𝑘 of ADBS. On dataset hutr, the estimated 𝜆 of
PDCSN is 397 larger than the optimal 𝑘 of RNN and 290 higher than
hat of ADBS. Nevertheless, the running time of PDCSN is still better
han that of DSets, DPC, DBS, and OPT on all experimental datasets.

To further investigate the scalability of PDCSN on high-dimensional
nd large-scale datasets, 12 different types of datasets were generated,
.e., experiments were performed on 12 synthetic datasets each of size
rom 100,000 to 600,000 and dimensions ranging from 2 to 60. To
nsure variability between clusters, each dataset has three clusters
ith variances of 1.0, 2.0, and 3.0. This paper uses the size and
imension of datasets to represent each of them. For example, a two-
imensional dataset with 200,000 samples is represented as D20-2.
n addition, this paper also compares the speedup effect of different
earest neighbor searches (𝑘d-tree, R-tree) on the proposed algorithm.
igs. 16(a) and (b) show the running times of 𝑘d-tree-based PDCSN,
R-tree-based PDCSN, DBS, and RNN on different size datasets (D10-2,

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 15. ARI/NMI scores and the number of clusters of PDCSN with different 𝜆 on wine (a), Compound (b), banknote (c), and ORL (d).
Table 12
The running times of the seven algorithms on the experimental datasets (unit: s).

DataSet PDCSN ADBS RNN DSets DPC DBS OPT

D1 5.183 3.065 2.580 806.209 48.882 10.464 11.636
D2 7.702 3.293 3.047 528.449 72.927 12.216 14.425
Spril 0.024 0.051 0.010 1.708 0.179 0.158 0.144
Aggregation 0.092 0.097 0.046 3.126 0.566 0.503 0.404
Jain 0.039 0.054 0.037 1.205 0.300 0.211 0.174
Compound 0.029 0.065 0.014 1.187 0.235 0.236 0.199
D31 0.503 0.711 0.630 47.805 16.075 15.539 12.063
iris 0.010 0.020 0.005 0.240 0.046 0.041 0.069
wine 0.015 0.016 0.006 0.261 0.092 0.074 0.088
seed 0.017 0.025 0.007 0.410 0.055 0.045 0.100
breast 0.091 0.096 0.086 2.029 0.222 0.157 0.365
banknote 0.466 0.285 0.180 1.952 1.292 0.902 0.841
digit 0.454 0.227 0.240 16.959 2.254 0.817 2.316
htru2 22.692 5.378 1.591 1712.951 220.239 64.163 79.865
ecoil 0.038 0.050 0.010 0.750 0.078 0.065 0.158
ORL 0.081 0.099 0.072 4.647 3.768 2.629 5.074
USPS 13.892 5.033 2.505 1206.429 110.119 90.617 100.779
Birch2 35.816 21.716 13.088 N/A N/A 222.451 232.627
Worms 47.667 40.150 39.568 N/A N/A 198.018 152.581
Letter 20.412 12.226 14.351 2540.139 724.763 98.452 102.365
MNIST 175.575 163.236 158.129 6742.387 2620.486 622.689 558.161
D20-2, . . . , D60-2) and different dimension datasets (D10-10, D10-20,
. . . , D10-60), respectively. It is observed from Figs. 16(a) and (b) that
the execution time of the algorithms is proportional to the size of
the dataset. Moreover, compared with low-dimensional datasets, the
algorithm needs more time to process high-dimensional datasets. On
these datasets, RNN is found to be the fastest algorithm, while DBS
is the slowest. Although PDCSN is not the fastest, its time overhead
is within an acceptable range compared to RNN. Additionally, since
𝑘d-tree-based PDCSN is slightly better than R-tree-based PDCSN, all
experiments in this paper introduce 𝑘d-tree to accelerate the nearest
neighbor search.
15
To explore the specific factors affecting the time overhead of PD-
CSN, the running times of each phase and nearest neighbor search on
datasets D10-2, D20-2, D30-2, D10-10, D10-20, and D10-30 are shown
in Table 13. From Table 13, as the amount of data increases, the real
impact on time overhead is for phases 1 and 3. For example, on dataset
D30-2, although the running time of the nearest neighbor search is 30 s,
the running times of phase 1 and phase 3 significantly increase the
overall time overhead. For phase 1, the large number of computations
increases its time overhead because it requires multiple traversals of
the dataset to calculate the optimal neighborhood size 𝜆. For phase
3, it needs to calculate the intersection of a large number of nearest

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Table 13
The running times of PDCSN in each phase on the experimental datasets (unit: s).

DataSet Nearest neighbor search Phase 1 Phase 2 Phase 3 Phase 4

𝑘-d tree R-tree

D10–2 7.320 8.124 25.267 6.093 19.034 1.887
D20–2 16.437 35.939 54.851 17.084 41.347 5.906
D30–2 30.282 53.393 105.995 32.055 127.449 5.915
D10–10 186.798 193.587 49.846 22.622 56.763 5.151
D10–20 233.233 221.957 63.344 18.920 59.536 13.544
D10–30 280.340 304.572 68.190 23.903 67.580 13.412
Fig. 16. Compare the running times of 𝑘d-tree-based PDCSN, R-tree-based PDCSN, DBS, and RNN on different size datasets (a) and different dimensional datasets (b), respectively.
Fig. 17. The ranking matrix of the average of ACC, NMI, F, and ARI, where the numbers on the blocks indicate the ranking of the algorithm performance.
neighbor lists, where the speed of finding the intersection is positively
related to the 𝜆. Furthermore, with the increase of data dimension,
it is the nearest neighbor search that affects the time overhead. On
dataset D10-30, the searching speedups of 𝑘d-tree and R-tree are 280 s
and 300 s, respectively, accounting for 61.8% and 63.7% of the total
running time, respectively. This indicates that the nearest neighbor
search becomes more time-consuming as the data dimension increases.

By comparing the running efficiency of PDCSN with the other six
algorithms, it can be concluded that the running efficiency of PDCSN
is acceptable and feasible because PDCSN fills the gap in user-input-
free, i.e., it does not require multiple attempts to determine the optimal
performance.

4.6. Discussion

Parameter dependence: ADBS, RNN, and OPT take the number of
nearest neighbors as user input, while DBS requires the user to input
16
𝑀𝑖𝑛𝑝𝑡𝑠 and 𝐸𝑝𝑠. Besides, DPC requires the user to set the number
of clusters. The lack of visual reference in high-dimensional datasets
makes finding the optimal parameters difficult. Compared with these
algorithms, PDCSN proposes a self-adaptive neighborhood approach
to estimate the optimal neighborhood size (i.e., the optimal number
of nearest neighbors) without user input as a prior knowledge. The
effectiveness of this approach is also confirmed in Section 4.4. Thus,
PDCSN can discover clusters without user input.

Algorithm accuracy: Fig. 17 shows the ranking of the average of
evaluation metrics on the 16 datasets. Fig. 18 depicts the difference
between the number of obtained and actual clusters. It is observed
from Figs. 17 and 18 that the first-ranked PDCSN has the optimal
metrics performance on 13 datasets. PDCSN is the first-best algorithm
in finding the optimal number of clusters on 12 datasets. In addition,
the clustering performances of PDCSN on datasets Compound, Jain,
and D31 verify its ability to handle adjacent clusters with arbitrary
density. Thus, the number of clusters and the cluster evaluation metrics

Expert Systems With Applications 227 (2023) 120195S. Xing et al.
Fig. 18. The matrix of the error in the number of clusters, where the number on the block indicates the L1 distance between the actual number and the obtained number.
demonstrate that PDCSN has better accuracy and robustness compared
with other algorithms.

Data dimensionality: as shown in Tables 5, 8, and 11, PDCSN
achieves excellent performance on 2-dimensional synthetic datasets
while still carrying over to real-world datasets. In addition, the cluster-
ing performance of PDCSN still does not lose out to other algorithms on
high dimensional/large scale datasets. The data distribution is usually
sparse for high-dimensional datasets, so simple distance metrics are
vulnerable to dimensional catastrophes. PDCSN ensures robustness of
clustering on high-dimensional data by integrating the neighbor in-
formation and taking advantage of the sparsity of the sample density
distribution. Therefore, the results on various dimensional datasets
show that PDCSN breaks the limitation of dimensional catastrophe to
reach the optimal solution.

Running efficiency: Table 12 shows that the running time of
PDCSN is much faster than DSets, DPC, DBS, and OPT on all datasets.
Although the running efficiency of PDCSN is not optimal, the running
time on the 10 datasets is comparable to the optimal value. How-
ever, these datasets are small-scale datasets. On large-scale datasets,
as shown in Fig. 16, the running time of PDCSN differs significantly
from that of the fastest RNN. Table 13 explains the main reason for
this discrepancy, i.e., more nearest neighbors and shared similarities
need to be computed as the size of the dataset increases. Moreover,
the difficulty of setting the algorithm parameters results in the need
for multiple executions to find the best performance of the algorithm.
Since PDCSN does not require multiple attempts to find the optimal
solution, it runs within an acceptable efficiency range. However, The
running time on large datasets is still a limitation of PDCSN, which is
a direction for our future work.

5. Conclusions

This paper proposes a partition density clustering with self-adaptive
neighborhoods (PDCSN) to discover clusters with arbitrary shapes and
densities in noise space without user-specified parameters. Compared
with other density-based algorithms, PDCSN has the following advan-
tages. First, the optimal neighborhood size can be estimated auto-
matically, thus breaking the dependency of user-specified parameters.
Secondly, the partition of the initial clusters can distinguish clusters
with large varying densities. Finally, the proposed core sample search
approach can distinguish adjacent clusters with similar densities, which
other variants cannot overcome. PDCSN is evaluated on 9 synthetic,
10 real-world, and 2 image datasets. The experimental results on
these datasets show that our algorithm can produce better clustering
performance. However, our algorithm increases the time overhead
in computing nearest neighbors and shared similarities. Therefore, in
our future work, we will consider reducing the time overhead while
maintaining the clustering performance.
17
CRediT authorship contribution statement

Shuai Xing: Conceptualization, Methodology, Software, Writing –
original draft. Qian-Min Su: Supervision, Final review. Yu-Jie Xiong:
Supervision, Writing – review & editing, Funding acquisition. Chun-
Ming Xia: Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is jointly sponsored by the Science and Technology
Commission of Shanghai Municipality, China (21DZ2203100), National
Natural Science Foundation of China (62006150), Shanghai Young
Science and Technology Talents Sailing Program (19YF1418400).

References

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering
points to identify the clustering structure. In Proceedings of the 1999 ACM SIG-
MOD international conference on management of data (pp. 49–60). Association for
Computing Machinery, http://dx.doi.org/10.1145/304182.304187.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9), 509–517. http://dx.doi.org/10.1145/
361002.361007.

Beygelzimer, A., Kakade, S., & Langford, J. (2006). Cover trees for nearest neighbor.
In Proceedings of the 23rd international conference on machine learning (pp. 97–
104). Association for Computing Machinery, http://dx.doi.org/10.1145/1143844.
1143857.

Boonchoo, T., Ao, X., Liu, Y., Zhao, W., Zhuang, F., & He, Q. (2019). Grid-based
DBSCAN: Indexing and inference. Pattern Recognition, 90, 271–284. http://dx.doi.
org/10.1016/j.patcog.2019.01.034.

Bryant, A., & Cios, K. (2018). RNN-DBSCAN: A density-based clustering algorithm using
reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and Data
Engineering, 30(6), 1109–1121. http://dx.doi.org/10.1109/TKDE.2017.2787640.

Cassisi, C., Ferro, A., Giugno, R., Pigola, G., & Pulvirenti, A. (2013). Enhancing density-
based clustering: Parameter reduction and outlier detection. Information Systems,
38(3), 317–330. http://dx.doi.org/10.1016/j.is.2012.09.001.

Chen, M., Li, L., Wang, B., Cheng, J., Pan, L., & Chen, X. (2016). Effectively clustering
by finding density backbone based-on kNN. Pattern Recognition, 60, 486–498.
http://dx.doi.org/10.1016/j.patcog.2016.04.018.

Expert Systems With Applications 227 (2023) 120195S. Xing et al.

T

W

Chen, X., Liu, W., Qiu, H., & Lai, J. (2011). APSCAN: A parameter free algorithm for
clustering. Pattern Recognition Letters, 32(7), 973–986. http://dx.doi.org/10.1016/j.
patrec.2011.02.001.

Chen, Y., Zhou, L., Bouguila, N., Wang, C., Chen, Y., & Du, J. (2021). BLOCK-
DBSCAN: Fast clustering for large scale data. Pattern Recognition, 109, Article
107624. http://dx.doi.org/10.1016/j.patcog.2020.107624.

Cheng, D., Zhu, Q., Huang, J., Wu, Q., & Yang, L. (2019). A novel cluster validity index
based on local cores. IEEE Transactions on Neural Networks and Learning Systems,
30(4), 985–999. http://dx.doi.org/10.1109/TNNLS.2018.2853710.

Chowdhury, H. A., Bhattacharyya, D. K., & Kalita, J. K. (2021). UIFDBC: Effective
density based clustering to find clusters of arbitrary shapes without user input.
Expert Systems with Applications, 186, Article 115746. http://dx.doi.org/10.1016/j.
eswa.2021.115746.

Dua, D., & Graff, C. (2017). UCI machine learning repository. URL http://archive.ics.
uci.edu/ml.

Ertöz, L., Steinbach, M. S., & Kumar, V. (2003). Finding clusters of different sizes,
shapes, and densities in noisy, high dimensional data. In Proceedings of the 2003
SIAM international conference on data mining (pp. 47–58). http://dx.doi.org/10.
1137/1.9781611972733.5.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the
second international conference on knowledge discovery and data mining (pp. 226–231).

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., et al. (2014). A
survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE
Transactions on Emerging Topics in Computing, 2(3), 267–279. http://dx.doi.org/10.
1109/TETC.2014.2330519.

Fränti, P., & Sieranoja, S. (2018). K-means properties on six clustering benchmark
datasets. (pp. 4743–4759). URL http://cs.uef.fi/sipu/datasets/.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for
large databases. In Proceedings of the 1998 ACM SIGMOD international conference
on management of data (pp. 73–84). Association for Computing Machinery, http:
//dx.doi.org/10.1145/276304.276312.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. SIGMOD
Record, 14(2), 47–57. http://dx.doi.org/10.1145/971697.602266.

Hanafi, N., & Saadatfar, H. (2022). A fast DBSCAN algorithm for big data based on
efficient density calculation. Expert Systems with Applications, 203, Article 117501.

Hou, J., Gao, H., & Li, X. (2016). Dsets-DBSCAN: A parameter-free clustering algorithm.
IEEE Transactions on Image Processing, 25(7), 3182–3193. http://dx.doi.org/10.
1109/TIP.2016.2559803.

Hu, L., Liu, H., Zhang, J., & Liu, A. (2021). KR-DBSCAN: A density-based clustering al-
gorithm based on reverse nearest neighbor and influence space. Expert Systems with
Applications, 186, Article 115763. http://dx.doi.org/10.1016/j.eswa.2021.115763.

Jiang, H., Li, J., Yi, S., Wang, X., & Hu, X. (2011). A new hybrid method based
on partitioning-based DBSCAN and ant clustering. Expert Systems with Applications,
38(8), 9373–9381. http://dx.doi.org/10.1016/j.eswa.2011.01.135.

Karypis, G., Han, E.-H., & Kumar, V. (1999). Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8), 68–75. http://dx.doi.org/10.1109/2.781637.

Li, H., Liu, X., Li, T., & Gan, R. (2020). A novel density-based clustering algorithm
using nearest neighbor graph. Pattern Recognition, 102, Article 107206. http://dx.
doi.org/10.1016/j.patcog.2020.107206.

Liu, R., Wang, H., & Yu, X. (2018). Shared-nearest-neighbor-based clustering by fast
search and find of density peaks. Information Sciences, 450, 200–226. http://dx.doi.
org/10.1016/j.ins.2018.03.031.

Lv, Y., Ma, T., Tang, M., Cao, J., Tian, Y., Al-Dhelaan, A., et al. (2016). An efficient and
scalable density-based clustering algorithm for datasets with complex structures.
Neurocomputing, 171, 9–22. http://dx.doi.org/10.1016/j.neucom.2015.05.109.

Marques, J. C., & Orger, M. B. (2018). Clusterdv: A simple density-based clustering
method that is robust, general and automatic. Bioinformatics, 35(12), 2125–2132.

Rehman, A. U., & Belhaouari, S. B. (2022). Divide well to merge better: A novel
clustering algorithm. Pattern Recognition, 122, Article 108305. http://dx.doi.org/
10.1016/j.patcog.2021.108305.
18
Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks.
Science, 344(6191), 1492–1496. http://dx.doi.org/10.1126/science.1242072.

Ros, F., Guillaume, S., Riad, R., & El Hajji, M. (2022). Detection of natural clusters via
S-DBSCAN a self-tuning version of DBSCAN. Knowledge-Based Systems, 241, Article
108288. http://dx.doi.org/10.1016/j.knosys.2022.108288.

Samaria, F., & Harter, A. (1994). Parameterisation of a stochastic model for human
face identification. In Proceedings of 1994 IEEE workshop on applications of computer
vision (pp. 138–142). http://dx.doi.org/10.1109/ACV.1994.341300.

Sarma, A., Goyal, P., Kumari, S., Wani, A., Challa, J., Islam, S., et al. (2019). 𝜇DBSCAN:
An exact scalable DBSCAN algorithm for big data exploiting spatial locality. In 2019
IEEE international conference on cluster computing (pp. 1–11). Los Alamitos, CA, USA:
IEEE Computer Society, http://dx.doi.org/10.1109/CLUSTER.2019.8891020.

Song, K., Yao, X., Nie, F., Li, X., & Xu, M. (2021). Weighted bilateral K-means algorithm
for fast co-clustering and fast spectral clustering. Pattern Recognition, 109, Article
107560. http://dx.doi.org/10.1016/j.patcog.2020.107560.

Thanh, N. D., Ali, M., & Son, L. H. (2017). A novel clustering algorithm in a
neutrosophic recommender system for medical diagnosis. Cognitive Computation,
9(4), 526–544. http://dx.doi.org/10.1007/s12559-017-9462-8.

ian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., et al. (2022). Depth estimation
using a self-supervised network based on cross-layer feature fusion and the quadtree
constraint. IEEE Transactions on Circuits and Systems for Video Technology, 32(4),
1751–1766. http://dx.doi.org/10.1109/TCSVT.2021.3080928.

ang, J., Wang, N., Jia, Y., Li, J., Zeng, G., Zha, H., et al. (2014). Trinary-projection
trees for approximate nearest neighbor search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(2), 388–403. http://dx.doi.org/10.1109/TPAMI.2013.
125.

Wang, J., Zhu, C., Zhou, Y., Zhu, X., Wang, Y., & Zhang, W. (2018). From partition-
based clustering to density-based clustering: Fast find clusters with diverse shapes
and densities in spatial databases. IEEE Access, 6, 1718–1729. http://dx.doi.org/
10.1109/ACCESS.2017.2780109.

Weng, S., Gou, J., & Fan, Z. (2021). ℎ-DBSCAN: A simple fast DBSCAN algorithm for
big data. In Asian conference on machine learning (pp. 81–96). PMLR.

Wolf, L., Hassner, T., & Maoz, I. (2011). Face recognition in unconstrained videos with
matched background similarity. In CVPR 2011 (pp. 529–534). http://dx.doi.org/
10.1109/CVPR.2011.5995566.

Xiaoyun, C., Yufang, M., Yan, Z., & Ping, W. (2008). GMDBSCAN: Multi-density
DBSCAN cluster based on grid. In 2008 IEEE international conference on E-business
engineering (pp. 780–783). http://dx.doi.org/10.1109/ICEBE.2008.54.

Xu, T., & Jiang, J. (2022). A graph adaptive density peaks clustering algorithm
for automatic centroid selection and effective aggregation. Expert Systems with
Applications, 195, Article 116539. http://dx.doi.org/10.1016/j.eswa.2022.116539.

Ye, X., & Ho, J. W. (2019). Ultrafast clustering of single-cell flow cytometry data using
FlowGrid. BMC Systems Biology, 13(2), 35. http://dx.doi.org/10.1186/s12918-019-
0690-2.

Zhang, R., Du, T., Qu, S., & Sun, H. (2021). Adaptive density-based clustering algorithm
with shared KNN conflict game. Information Sciences, 565, 344–369. http://dx.doi.
org/10.1016/j.ins.2021.02.017.

Zhang, R., Miao, Z., Tian, Y., & Wang, H. (2022). A novel density peaks clustering
algorithm based on Hopkins statistic. Expert Systems with Applications, 201, Article
116892. http://dx.doi.org/10.1016/j.eswa.2022.116892.

Zhou, Z., Si, G., Sun, H., Qu, K., & Hou, W. (2022). A robust clustering algorithm
based on the identification of core points and KNN kernel density estimation.
Expert Systems with Applications, 195, Article 116573. http://dx.doi.org/10.1016/
j.eswa.2022.116573.

Zhou, J., Sun, J., Cong, P., Liu, Z., Zhou, X., Wei, T., et al. (2020). Security-critical
energy-aware task scheduling for heterogeneous real-time MPSoCs in IoT. IEEE
Transactions on Services Computing, 13(4), 745–758. http://dx.doi.org/10.1109/TSC.
2019.2963301.

Zhu, J., Zeng, H., Huang, J., Liao, S., Lei, Z., Cai, C., et al. (2020). Vehicle re-
identification using quadruple directional deep learning features. IEEE Transactions
on Intelligent Transportation Systems, 21(1), 410–420. http://dx.doi.org/10.1109/
TITS.2019.2901312.

